1. 12.7 回归决策树

1.1. 学习目标

  • 知道回归决策树的实现原理

前面已经讲到,关于数据类型,我们主要可以把其分为两类,连续型数据和离散型数据。在面对不同数据时,决策树也可以分为两大类型:

  • 分类决策树和回归决策树。
  • 前者主要用于处理离散型数据,后者主要用于处理连续型数据。

1.2. 1.原理概述

不管是回归决策树还是分类决策树,都会存在两个核心问题:

  • 如何选择划分点?
  • 如何决定叶节点的输出值?

一个回归树对应着输入空间(即特征空间)的一个划分以及在划分单元上的输出值。分类树中,我们采用信息论中的方法,通过计算选择最佳划分点。

而在回归树中,采用的是启发式的方法。假如我们有n个特征,每个特征有image-20230711150216160个取值,那我们遍历所有特征,尝试该特征所有取值,对空间进行划分,直到取到特征 j 的取值 s,使得损失函数最小,这样就得到了一个划分点。描述该过程的公式如下:

image-20230711150450919

假设将输入空间划分为M个单元: R1,R2,...,Rm R_1,R_2,...,R_m 那么每个区域的输出值就是: cm=avg(yixiRm) c_m=avg(y_i|x_i\in R_m) 也就是该区域内所有点y值的平均数。

举例:

如下图,假如我们想要对楼内居民的年龄进行回归,将楼划分为3个区域R1,R2,R3(红线),

那么R1的输出就是第一列四个居民年龄的平均值,

R2的输出就是第二列四个居民年龄的平均值,

R3的输出就是第三、四列八个居民年龄的平均值。

image-20230711150753343

1.3. 2.算法描述

  • 输入:训练数据集D:
  • 输出:回归树f(x).
  • 在训练数据集所在的输入空间中,递归的将每个区域划分为两个子区域并决定每个子区域上的输出值,构建二叉决策树:
    • (1)选择最优切分特征j与切分点s,求解image-20230711150805145遍历特征j,对固定的切分特征j扫描切分点s,选择使得上式达到最小值的对 (j,s).
    • (2)用选定的对(j,s)划分区域并决定相应的输出值:image-20230711150814783(3)继续对两个子区域调用步骤(1)和(2),直至满足停止条件。
    • (4)将输入空间划分为M个区域R1,R2,……,Rm, 生成决策树:image-20230711150823899

1.4. 3.简单实例

为了易于理解,接下来通过一个简单实例加深对回归决策树的理解。

训练数据见下表,目标是得到一棵最小二乘回归树。

x 1 2 3 4 5 6 7 8 9 10
y 5.56 5.7 5.91 6.4 6.8 7.05 8.9 8.7 9 9.05

1.4.1. 3.1 实例计算过程

(1)选择最优的切分特征j与最优切分点s:

  • 确定第一个问题:选择最优切分特征:

    • 在本数据集中,只有一个特征,因此最优切分特征自然是x。
  • 确定第二个问题:我们考虑9个切分点 [1.5,2.5,3.5,4.5,5.5,6.5,7.5,8.5,9.5] 。

    • 损失函数定义为平方损失函数: Loss(y,f(x))=(f(x)y)2 Loss(y,f(x))=(f(x)-y)^2

    • 将上述9个切分点依此代入下面的公式,其中 cm=avg(yixiRm) c_m=avg(yi|xi\in R_m)

a、计算子区域输出值:

例如,取 s=1.5。此时�1=1,�2=2,3,4,5,6,7,8,9,10R1=1,R2=2,3,4,5,6,7,8,9,10,这两个区域的输出值分别为:

  • c1=5.56 c1=5.56
  • c2=(5.7+5.91+6.4+6.8+7.05+8.9+8.7+9+9.05)/9=7.50 c2=(5.7+5.91+6.4+6.8+7.05+8.9+8.7+9+9.05)/9=7.50

同理,得到其他各切分点的子区域输出值,如下表:

s 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5
c1 5.56 5.63 5.72 5.89 6.07 6.24 6.62 6.88 7.11
c2 7.5 7.73 7.99 8.25 8.54 8.91 8.92 9.03 9.05

b、计算损失函数值,找到最优切分点:

把c1,c2的值代入到同平方损失函数: Loss(y,f(x))=(f(x)y)2 Loss(y,f(x))=(f(x)-y)^2 当s=1.5时,

image-20230711151141613

同理,计算得到其他各切分点的损失函数值,可获得下表:

s 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5
m(s) 15.72 12.07 8.36 5.78 3.91 1.93 8.01 11.73 15.74

显然取 s=6.5时,m(s)最小。因此,第一个划分变量【j=x,s=6.5】

(2)用选定的(j,s)划分区域,并决定输出值;

  • 两个区域分别是: R1={1,2,3,4,5,6},R2={7,8,9,10} R1=\{1,2,3,4,5,6\},R2=\{7,8,9,10\}

  • 输出值 cm=avg(yixiRm),c1=6.24,c2=8.91 c_m=avg(yi|xi\in Rm),c1=6.24,c2=8.91

(3)调用步骤 (1)、(2),继续划分:

对R1继续进行划分:

x 1 2 3 4 5 6
y 5.56 5.7 5.91 6.4 6.8 7.05

取切分点[1.5,2.5,3.5,4.5,5.5],则各区域的输出值c如下表:

s 1.5 2.5 3.5 4.5 5.5
c1 5.56 5.63 5.72 5.89 6.07
c2 6.37 6.54 6.75 6.93 7.05

计算损失函数值m(s):

s 1.5 2.5 3.5 4.5 5.5
m(s) 1.3087 0.754 0.2771 0.4368 1.0644

s=3.5时,m(s)最小。

(4)生成回归树

假设在生成3个区域之后停止划分,那么最终生成的回归树形式如下:

image-20230711151300024

1.4.2. 3.2 回归决策树和线性回归对比

import numpy as np
import matplotlib.pyplot as plt
from sklearn.tree import DecisionTreeRegressor
from sklearn import linear_model

# 生成数据
x = np.array(list(range(1, 11))).reshape(-1, 1)
y = np.array([5.56, 5.70, 5.91, 6.40, 6.80, 7.05, 8.90, 8.70, 9.00, 9.05])

# 训练模型
model1 = DecisionTreeRegressor(max_depth=1)
model2 = DecisionTreeRegressor(max_depth=3)
model3 = linear_model.LinearRegression()
model1.fit(x, y)
model2.fit(x, y)
model3.fit(x, y)

# 模型预测
X_test = np.arange(0.0, 10.0, 0.01).reshape(-1, 1)  # 生成1000个数,用于预测模型
X_test.shape
y_1 = model1.predict(X_test)
y_2 = model2.predict(X_test)
y_3 = model3.predict(X_test)

# 结果可视化
plt.figure(figsize=(10, 6), dpi=100)
plt.scatter(x, y, label="data")
plt.plot(X_test, y_1,label="max_depth=1")
plt.plot(X_test, y_2, label="max_depth=3")
plt.plot(X_test, y_3, label='liner regression')

plt.xlabel("data")
plt.ylabel("target")
plt.title("Decision Tree Regression")
plt.legend()

plt.show()

结果展示

image-20230711151307345


1.5. 4 小结

  • 回归决策树算法总结【指导】

    • 输入:训练数据集D:

    • 输出:回归树f(x).

    • 流程:在训练数据集所在的输入空间中,递归的将每个区域划分为两个子区域并决定每个子区域上的输出值,构建二叉决策树

      • (1)选择最优切分特征j与切分点s,求解image-20191113142934512遍历特征j,对固定的切分特征j扫描切分点s,选择使得上式达到最小值的对(j,s).
      • (2)用选定的对(j,s)划分区域并决定相应的输出值:image-20191113143419846
      • (3)继续对两个子区域调用步骤(1)和(2),直至满足停止条件。
      • (4)将输入空间划分为M个区域R1,R2,……,Rm, 生成决策树:image-20191113143611418
Copyright © MISIN 2022 | 豫ICP备2023040351号-1 all right reserved,powered by Gitbook该文件修订时间: 2024-01-12 07:58:59

results matching ""

    No results matching ""